43 research outputs found

    The OPERA magnetic spectrometer

    Full text link
    The OPERA neutrino oscillation experiment foresees the construction of two magnetized iron spectrometers located after the lead-nuclear emulsion targets. The magnet is made up of two vertical walls of rectangular cross section connected by return yokes. The particle trajectories are measured by high precision drift tubes located before and after the arms of the magnet. Moreover, the magnet steel is instrumented with Resistive Plate Chambers that ease pattern recognition and allow a calorimetric measurement of the hadronic showers. In this paper we review the construction of the spectrometers. In particular, we describe the results obtained from the magnet and RPC prototypes and the installation of the final apparatus at the Gran Sasso laboratories. We discuss the mechanical and magnetic properties of the steel and the techniques employed to calibrate the field in the bulk of the magnet. Moreover, results of the tests and issues concerning the mass production of the Resistive Plate Chambers are reported. Finally, the expected physics performance of the detector is described; estimates rely on numerical simulations and the outcome of the tests described above.Comment: 6 pages, 10 figures, presented at the 2003 IEEE-NSS conference, Portland, OR, USA, October 20-24, 200

    Electromagnetic characterization of the 990 ton gapless magnets for the OPERA experiment

    Get PDF
    The instrumented targets of the OPERA neutrino experiment are complemented by two massive spectrometers based on gapless iron magnets. In 2006, a systematic assessment of their electromagnetic properties have been carried out. In this document, we report the results of such characterization and demonstrate that the achieved performance fulfill the physics requirements for the study of νμ→ντ oscillations

    The instrumented magnets for the OPERA experiment: construction and commissioning

    Get PDF
    The design and construction of the 990-ton gapless iron magnets for the OPERA experiment represent a major challenge from the point of view of mechanics, electric and heat engineering. Two of such magnets have been built in a deep underground hall of the Gran Sasso laboratories between 2003 and 2006 and they have been switched on for the first time in March 2006. In this paper we discuss the construction and characterization of these devices. First experience with the CNGS beam are also reported. © 2007 Elsevier B.V. All rights reserved

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    First events from the CNGS neutrino beam detected in the OPERA experiment

    Get PDF
    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.Comment: Submitted to the New Journal of Physic

    Technical Design Report for the: PANDA Micro Vertex Detector

    Full text link
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.Comment: 189 pages, 225 figures, 41 table

    Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

    Full text link
    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.Comment: 216 page

    Study of the effects induced by lead on the emulsion films of the OPERA experiment

    Get PDF
    The OPERA neutrino oscillation experiment is based on the use of the Emulsion Cloud Chamber (ECC). In the OPERA ECC, nuclear emulsion films acting as very high precision tracking detectors are interleaved with lead plates providing a massive target for neutrino interactions. We report on studies related to the effects occurring from the contact between emulsion and lead. A low radioactivity lead is required in order to minimize the number of background tracks in emulsions and to achieve the required performance in the reconstruction of neutrino events. It was observed that adding other chemical elements to the lead, in order to improve the mechanical properties, may significantly increase the level of radioactivity on the emulsions. A detailed study was made in order to choose a lead alloy with good mechanical properties and an appropriate packing technique so as to have a low enough effective radioactivity.Comment: 19 pages, 11 figure
    corecore